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Abstract:

Hyperspectral Remote Sensing imagery combined with Object-Based Image Analysis (OBIA) offers a robust
method for mapping wetland vegetation. This study explores the classification of wetland vegetation focusing on the
Fort Drum Marsh Conservation Area (FDMCA) within the St. Johns River Water Management District using OBIA
and Machine learning techniques. The research utilizes Hyperion EO-1 imagery acquired in 2003 and reference
datasets to classify eight wetland vegetation communities. Utilizing Random Forest (RF) and Support Vector
Machine (SVM) algorithms, the study achieves overall accuracies of 83.6% and 80.5%, respectively, with RF
demonstrating higher performance. However, challenges such as misclassifications persist, particularly in
distinguishing between similar vegetation classes. Despite limitations inherent in coarse-resolution imagery and
potential misclassifications, the study highlights the efficacy of OBIA integration with machine-learning techniques
for wetland vegetation mapping. It emphasizes the significance of post-classification assessment for improving
accuracy and identifies areas for future improvement.

Introduction:
Satellite-based imagery is an essential approach
for examining changes and mapping wetlands.
Using hyperspectral imagery makes it easy to
detect patterns and discern the types of
vegetation or land cover categories. It provides
high spectral resolution data, allowing it to
detect subtle differences in vegetation. This
capability is precious in wetland environments,
where vegetation plays a significant role in
ecological functions. It gives opportunities to
obtain more scrutinized information than other
multispectral data. This technology has been
promising in geospatial research, monitoring,
and exploration applications (Shipert, 2004) and
wetland vegetation classification (Zhang &
Xie,2013).
Classification of wetland vegetation using
hyperspectral remote sensing and Object-Based
Image Analysis (OBIA) can be a convincing
means for monitoring and managing wetlands.
OBIA offers a more precise and detailed

analysis compared to pixel-based methods. It is
commonly known that a pixel-based
classification approach leads to an effect known
as "salt and pepper" during mapping
heterogeneous landcover types. This effect can
be mitigated using OBIA and is valuable and
promising for vegetation classification (Zhang &
Xie,2012). It operates by grouping similar pixels
into 'objects,' which can then be classified based
on spectral and spatial characteristics. This
method enhances the accuracy and reliability of
wetland vegetation change detection, facilitating
more effective wetland management and
monitoring. Wetlands offer numerous ecosystem
benefits, but their historical documentation has
been inadequate. However, researchers have
made significant progress in addressing this gap
through remote sensing technology and a
method known as change detection
(Mahdianpari et al.,2021).
Wetlands contain many ecosystems and
applications, including carbon sequestration,
water supply and monitoring, wildlife and

1

mailto:mthapachhetr2023@fau.edu
mailto:chhetrim79@gmail.com


vegetation, and flood and sedimentation control
(Davidson et al., 2019). Vegetation species
found in wetland environments are challenging
to identify due to low accessibility. Wetlands are
crucial in preserving and conserving critical
habitats and monitoring water quality. Mapping
the vegetation of wetlands has been made easier
with recent advancements in remote sensing
technology. Using deep learning techniques and
machine learning has also helped solve half of
the problems associated with vegetation
classification (Jafarzadeh et al., 2022). A
meta-analysis of 30 years of research has shown
that data obtained from remote sensing and
machine learning approaches are valuable for
wetland observing and multi-representation
findings. They may open newfound viewpoints
for research studies and advance scientific
support for management decisions.
Support Vector Machine (SVM) and Random
Forest (RF) are popular machine-learning
algorithms for supervised classification because
of their high accuracy than other methods for
land cover (Nery et al., 2016; Chhetri &
Rijal,2023) and vegetation mapping
(Sabat-Tomala et al., 2020). SVM is a
supervised classification algorithm designed to
obtain a hyperplane that effectively divides the
input dataset into distinct, pre-defined
categories, aligning with the patterns observed in
the training data. This approach is widely
employed in numerous real-world classification
problems due to its strong theoretical foundation
and superior performance in terms of
generalization (Cercantes et al., 2020). On the
other hand, RF is an ensemble classifier based
on decision trees (Brieman,2001) representing a
sophisticated and powerful machine-learning
model.
Generally, vegetation species found in the
wetland environment are challenging to reach

and identify. Moreover, wetlands are one of the
essential components that help in the
preservation and conservation of critical habitats
and water quality monitoring. With the
difficulties in identifying the plant species due to
low accessibility, it is hard to map the vegetation
of wetlands. However, with the recent
advancements of remote sensing technology,
mapping of wetland vegetation has become
relatively easy. Along with remote sensing
imagery, modern machine learning and deep
learning have solved half of the problems of
vegetation classification. In this study, I aim to
analyze the classification of wetland vegetation
using OBIA and Machine learning algorithms.
This study will utilize Hyperspectral Remote
sensing imagery and carry out the supervised
classification of wetland vegetation, and areas of
classified vegetation will be quantified and
analyzed. This process helps to save
labor-intensive and manual interpretation, which
may take a long time.

Materials and Methods
Study Area
For this research, I utilized the portion of the
Fort Drum Marsh Conservation Area (FDMCA)
wetland in the St. Johns River Water
Management District (SJRWMD) (Figure 1).
This conservational area contains a combination
of wetland and upland communities jointly
acquired by the U.S. Army Corps of Engineers
and the Upper St. Johns River Basin project for
controlling floods and revitalizing the basin
(SJRWMD, 2022). This area has diverse wetland
communities, which are vital for improving
water quality and enhancing or restoring wetland
habitat. Wetland vegetation communities within
this area consist of wet prairie, hardwood
swamp, cypress, shrub swamp, and many more.
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Figure 1 Map Showing the Study area at FDMCA, illustrating Hyperspectral imagery with three MNF
transformed bands on it.

Data
Data sources include hyperspectral imagery
EO-1/Hyperion and reference datasets.
Hyperspectral imagery was collected in
2003/05/04 by the Hyperion Imaging
Spectrometer onboarded on the EO-1 spacecraft.
The orbit path was 15, the Row was 41, and the
target path and row were 15 and 41, respectively.
This sensor has 242 contiguous spectral bands
with wavelengths of 0.4-2.5 μm and a 30 m
spatial resolution. The reference datasets were
obtained from the SJRWMD.

Methodology
A detailed flowchart of this research’s
methodology is given below in Figure 2. After
acquiring hyperspectral imagery, radiometric
and geometric corrections were performed using
ENVI 5.7 software. The imagery was spatially
and spectrally subset- by manually visualizing
the noisy bands and removing them. A
Minimum Noise Fraction (MNF) transformation
was harnessed to enhance the accuracy of

subsequent classification (Zhang & Xie, 2012).
This process decreased noise and eliminated
statistically insignificant bands, and 32 bands
were selected based on eigenvalues.

Subsequently, the preprocessed imagery was
imported into ArcGIS Pro for object-based
classification. The initial step involved
segmentation using the image classification
wizard (ESRI, n.d.). Given the small size of the
study area and the diverse vegetation
communities, a spectral and spatial size of 15
and a segment size of 10 were chosen to
optimize segmentation.

Following segmentation, training samples were
selected for eight classes, considering reference
datasets to ensure precision. The training
datasets were then employed to classify the
imagery using SVM and RF methods. The
classification results were subjected to accuracy
assessment based on the training samples.
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Figure 2 Flowchart for the entire procedure for wetland communities' vegetation mapping.

Results and Discussion
The classified maps using Hyperion
Hyperspectral Imagery based on RF and SVM
are presented in Figure 3. The vegetation classes
mapped in this study are listed in Table 01.

Although the reference datasets have more
vegetation class, due to the imagery being from
2003, I selected eight communities based on
visual inspection analyzing their spectral
signatures.

Table 01: Wetland Vegetation Mapped in this project:

Plant Communities Abbreviation Community Type Abbreviation

Mixed Herbaceous Marsh HM Herbaceous Wetland HW
Pasture PA Herbaceous Upland HU
Shrub Swamp SS Shrub Wetland SW
Upland Hardwood UH Forested Upland FU
Wet Prairie/Wet Pasture WP Herbaceous Wetland HW
Cypress CY Forested Upland FU
Grass/Sedge Marsh GM Herbaceous Wetland HW
Hardwood Swamp HS Forested Wetland FW
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The classification accuracies were assessed by
creating a Confusion Matrix, and the overall
assessment is shown in Table 02. RF showed
better overall accuracy and kappa statistics than

the SVM during classification. Both classified
imageries seem to have good synchronization
with reference datasets upon visual inspection
and verification.

Table 02: Accuracy assessment summary for the performance of two OBIA classifiers

Methods RF SVM

Overall accuracy % 83.6 80.5

Kappa statistics 0.81 0.77

Figure 3 Maps illustrating vegetation classification of a portion of FDMCA wetland, SJRWMD, using
hyperspectral remote sensing imagery with OBIA machine learning approach: a) Random Forest and b)
Support Vector Machine. Legend and color combinations are common for respective vegetation classes in
both maps.

While looking for the RF classification
approach, the users' and producers' accuracy was
above 70% based on training samples. Mainly,
hardwood swamp was misclassified with upland
hardwood and cypress, whereas pasture was
misclassified to wet prairie and grass/sedge
marsh. Mixed Herbaceous Marsh was also
misidentified as grass/ sedge marsh due to their
similar spatial characteristics. A detailed error

matrix showing the accuracy of each class in
terms of users and producers is given in Table
03.
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Table 03: Error matrix of RF classification of the Hyperion imagery

Classes CY SS PA WP HS HM UH GM Row
Total

UA
(%)

CY 18 1 19 94.7
SS 2 16 75 80
PA 3 14 1 28 77.8
WP 1 8 1 36 80
HS 7 2 1 34 70
HM 15 2 57 88.2
UH 1 1 1 8 22 80
GM 1 1 1 1 21 32 87.5

Column
Total 20 20 18 9 7 18 11 25 OA = 83.6%

PA (%) 90 80 77.8 88.9 100 83.3 72.7 84 Kappa = 0.81

In the SVM classification approach, user and
producer accuracies exceed 60%. However,
producer accuracy has notably decreased,
primarily due to misclassifications. Wet prairie,
for instance, is consistently misclassified as
various other classes, except cypress. Similarly,
misidentification occurs with grass/sedge marsh,
misclassified as pasture, wet prairie, and mixed

herbaceous marsh. Challenges persist in
correctly classifying hardwood swamp, as it
tends to be misclassified as shrub swamp and
upland hardwood. These misclassification
patterns contribute to the observed decrease in
producer accuracy, highlighting areas for
improvement in the classification model.

Table 03: Error matrix of SVM classification of the Hyperion imagery
Classes CY SS PA WP HS HM UH GM Row

Total
UA
(%)

CY 16 1 2 19 84.2
SS 2 16 1 1 1 1 75 80
PA 1 15 1 1 28 83.3
WP 1 9 36 90
HS 1 1 7 1 34 70
HM 1 1 13 2 57 76
UH 1 1 8 22 80
GM 2 1 1 1 19 32 79.2

Column
Total

17 18 20 14 10 15 11 23 OA = 80.5%

PA (%) 94.1 88.9 75 64.3 70 86.7 72.7 82.6 Kappa = 0.77

Generally, the vegetation of wetlands plays a
crucial role in various activities like flood
control and treatment of storm and wastewater.
Vegetation in the wetland is also controlled

systematically such that it helps maintain the
ecosystem. Using OBIA, diverse vegetation of
communities can be quickly and easily mapped
using modern machine learning approaches. The
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classified vegetation in Figure 3, derived using
the methodology presented above for the
FDMCA portion, shows alignment upon visual
inspection.

Despite using identical training datasets, slight
differences in vegetation class classification
were noted. Mapping individual vegetation
classes is complex due to similarities of spectral
signature, leading to occasional
misclassifications, such as shadows being
identified as water. The analysis, focusing on
community-level distinctions, adopts an OBIA
approach, favoring better classification for a
given area.

Acknowledging inherent limitations, the OBIA
approach, as employed in this study, proves
highly effective in wetland vegetation mapping,
similar to studies on mapping Everglades
vegetation (Zhang & Xie, 2012). Similarly,
using RF outperforms K-Nearest Neighbors
(KNN) in pixel and object-based analyses
(Martinez Prentice et al., 2021) when applied to
coastal wetland vegetation. The choice of RF
underscores its efficacy in accurately classifying
wetland vegetation in both this and my studies.

The effectiveness of mapping Everglades
vegetation using multispectral imagery,
specifically the Landsat imagery series, was
demonstrated successfully (Zhang et al.,2017).
The approach employed OBIA with the SVM
algorithm, and results indicated an acceptable
overall accuracy exceeding 87%. The overall
classification accuracy was 94%, and the kappa
statistics value was 0.94 on average when
classifying the 15 vegetation classes (Zhang
&Xie.,2012). However, based on these two
studies, my study has less overall accuracy; this
may have resulted from misclassification and
coarse resolution of hyperspectral imagery. In
addition, improper labeling and lack of ground
truth data make the outcomes less accurate.
Despite having access to Ecognition for

segmentation, I encountered challenges in
exporting classified images based on machine
learning due to software issues. Consequently, I
shifted the focus of the entire research to
ArcGIS Pro for Object-Based Image Analysis
(OBIA).

Conclusion
In the context of vegetation classification in
wetlands, this study investigates the utilization
of coarse-resolution imagery in contrast to the
high-resolution imagery trends. It specifically
explores the applicability of coarser resolution,
exemplified by Hyperion EO-1 imagery, for
wetland vegetation classification. Despite the
inherent coarser resolution, the classification of
images demonstrates a notable resemblance to
reference datasets. The study underscores the
efficacy of modern machine learning techniques,
namely RF and SVM, for such classifications.
Both classifiers show overall accuracies
exceeding 80%, with kappa statistics surpassing
0.75, affirming their efficiency in vegetation
classification. Notably, RF achieves an overall
accuracy of 83% and a kappa statistic of 0.8,
outperforming SVM, which attains 80% overall
accuracy and 0.77 kappa statistics. Despite these
high accuracies and resemblances to reference
datasets, certain misclassifications and
misidentifications across classes were seen. The
study suggests that implementing
post-classification assessment could enhance
accuracy by addressing such discrepancies. It is
acknowledged that the overall accuracy in this
study falls below that reported in studies
involving very high-resolution imagery. In
conclusion, the research asserts that OBIA
coupled with machine learning approaches
proves effective for mapping wetland vegetation
cover while recognizing areas for potential
improvement.
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